Growing Stronger: EP Labs Come into Their Own

Twitter icon
Facebook icon
LinkedIn icon
e-mail icon
Google icon

 

 
  Praian Anghiel, MD, a cardiologist specializing in electrophysiology,
works on a patient at Washington Hospital Center.

As cardiology evolves, one crucial subspecialty may be growing in demand far beyond the industry’s present ability to provide highly trained, dedicated technicians: electrophysiology.

Because electrophysiology (EP) technology is not yet a recognized profession, hospitals have found it difficult to find, hire and retain personnel qualified to work in this area; the lack of professional recognition has also made it hard to set and negotiate competitive salaries.

To address the shortage, some physicians and nurses have found it necessary to provide on-the-job, real-time training in EP labs, a less-than-ideal solution that slows the completion of complex procedures and hampers patient through-put.

Some facilities have developed ad hoc programs to train technicians, often recruiting cath lab staff to do double duty; others, like Lancaster General Hospital, an acclaimed 518-bed facility in south central Pennsylvania, have designed comprehensive EP internships for electrophysiology technologists.

Momentum is increasing toward the advanced training and formal certification of these vital staff members. In March, Cardiovascular Credentialing International (CCI)—which issued a call in 2006 for credentialing in the discipline—introduced a new entry-level Registered Cardiac Electrophysiology Specialist (RCES) credential.

Each step that builds strong staff infrastructure in this discipline is a step in the right direction, says Edward V. Platia, MD, director of the Cardiac Arrhythmia Center at the Washington Hospital Center, with one of the top five EP labs in the DC-Maryland-Virginia area.

“There’s a relative dearth of qualified technicians, so frankly we’ve had to train our own, on-site, in the lab,” says Platia. “As you can imagine, given the full facets of electrophysiology training, it’s a rare occurrence when we get someone who is already experienced—that luxury never really occurs to us.”

At Washington Hospital Center—named one of the nation’s best hospitals for heart care and heart surgery by US News & World Report—EP techs new to the job serve as “sort of apprentices,” according to Platia. In the early part of their training, they work alongside senior staff members who shepherd them through their duties—everything from setting up and sterilizing the lab and insuring that supplies are in place, to learning the types and uses of recording and mapping apparatus as well as catheters and computer software.

“Eventually,” says Platia, “they actually put their hands on patients.”

The hospital conducts in-service training both in and out of the hospital setting, and frequently sends techs-in-training to educational seminars (one example: informational sessions held at a Cincinnati-based supplier of cardiac mapping equipment).

“In short, we invest a lot in these people,” Platia says. “Our techs ultimately become so qualified, they go on to take what is, in essence, the national boards (exams by the Heart Rhythm Society and the International Board of Heart Rhythm Examiners). These are credentials you can hang your hat on.”

Nevertheless, physicians would almost certainly prefer to have EP techs walk in on Day One, trained and ready to perform competently in what Platia says are, “in essence, surgical cases.”

How it’s done


EP studies of the heart are performed to analyze cardio-electrical activity, chiefly in patients with heart arrhythmias, a leading cause of sudden cardiac death.

Because arrhythmias are by definition unpredictable and intermittent, they are difficult to isolate through an electrocardiogram; even tests of longer duration, like Holter monitoring, are not dependable tools in the attempt to capture and assess underlying arrhythmic activities.

EP tests, on the other hand, last from one to four hours (in certain cases, including some ventricular tachycardias, the tests have been known to last a full six hours).

Using cardiac catheters linked to sophisticated computers, the electrophysiologist literally provokes arrhythmic activity in a highly controlled and monitored lab environment to determine the precise location of disordered electrical signals. EP studies are used to diagnose as well as treat patients with certain tachycardias or bradycardias, those who have been resuscitated after experiencing sudden cardiac arrest, and those with symptoms like chest pain, shortness of breath, fatigue, dizziness