CT Beyond 64 Slices: Dynamic Volume CT Promises to Streamline Workflow, Improve the Bottom Line

Twitter icon
Facebook icon
LinkedIn icon
e-mail icon
Google icon
 
  The biggest advantage of 320-detector CT is its 16-cm anatomic coverage that can scan an entire organ, such as the heart, in a single gantry rotation, thus minimizing artifacts and allowing lower-dose imaging.
The rapid advances in CT technology over the last decade have been amazing. This is especially true in the field of cardiac CT, which pushes computed tomography technologic innovation to its limits. The introduction of the 320-detector row dynamic volume CT scanner (Toshiba America Medical Systems) in 2007 promised to improve patient outcomes and cost-effectiveness by providing more accurate, comprehensive results in shorter periods of time. Our experiences to date lend support to these promises.

The biggest advantage of 320-detector CT is its 16-cm anatomic coverage that can scan an entire organ, such as the heart, in a single gantry rotation. For cardiac imaging, this means we can obtain the entire image in a single heartbeat rather than multiple heartbeats, thus minimizing artifacts and allowing lower-dose imaging. We also are seeing the potential to open up completely new fields of study with this technology in terms of brain and other organ perfusion.

I have been involved in more than 400 cardiac CT angiograms, 300 peripheral vascular studies and more than 50 neurovascular perfusion studies on the 320-detector CT. This article will discuss my experiences over the past year using 320-detector row dynamic volume CT and explore dynamic volume CT’s impact on streamlining clinical pathways and workflow, as well as improving the bottom line.

New vs. ‘old’

Using traditional multidetector CT to image the heart requires five to seven heartbeats and images are “stitched” together, potentially creating clinical inaccuracies and artifacts (misregistration). Furthermore, if the patient’s heart rate is irregular, the heart may be in different locations from beat to beat throughout the scan, resulting in the data not lining up.

Using 320-detector CT, the entire heart is imaged in less than a heartbeat and using a single gantry rotation that takes less than a second. This results in unparalleled temporal uniformity by imaging the whole heart at one point in time, and capturing the contrast and data acquisition from a single heartbeat. In addition, there is no need to stitch together images from multiple gantry rotations, so issues with artifacts, misregistration and contrast non-uniformity associated with traditional multidetector CT are eliminated. Furthermore, this makes heart rate irregularities (arrhythmias) easier to manage.

Benefits of dynamic volume CT

Besides the advantages noted above, we have seen the following dramatic improvements over multidetector CT:
  • Better Image Quality. For cardiac-specific work, 320-detector CT eliminates contrast non-homogeneity, artifacts, misregistration and many other problems we see with traditional multidetector cardiac CT. We have observed less blooming around calcium and stents, allowing for faster interpretation of studies and improved workflow.
  • Reduced Contrast and Radiation Dose. Radiation dose associated with CT has always been a concern and 320-detector dynamic volume CT offers a dramatic improvement. Since the system’s x-ray tube is on for such a short period and there is no overlap scanning (as there is in 64-slice imaging), radiation dose is significantly reduced. In many cases, we see radiation dose as low as 2 to 3 mSv per study–about half the dose of an invasive diagnostic cardiac catheterization and a fraction of the dose seen with multidetector CT. Thus far, the average dose is 4 mSv. The speed of the system also reduces the amount of contrast needed. A typical dynamic volume CT scan uses 50 cc to 60 cc of contrast, which is down from 80 cc to 100 cc on previous CT systems.
  • Greater Coverage. As noted earlier, the 16 cm coverage and the ability to take multiple acquisitions to obtain real-time organ perfusion is unprecedented in CT.
  • Lower Costs, Improved Workflow. In the workup of certain types of chest pain patients, the dynamic volume CT scan can lower costs through faster, more accurate diagnosis and help replace several diagnostic tests with a single exam. When used correctly, we have seen this advanced technology reduce exam time and hospital stays for patients, and reduce contrast and radiation dose, all of which can help lower costs and improve workflow.

In step with healthcare policy changes

This technology is ideal for inpatient settings such as community hospitals, emergency rooms and other high-volume settings. We have 6 million patients a year showing up to emergency departments in the U.S. with chest pain at a diagnostic cost of $12 to $14 billion. A patient presenting with chest pain can currently take several hours to diagnose and would undergo several exams with varying levels of radiation. This same patient could be diagnosed with dynamic volume CT in a matter of minutes and sent home if healthy or treated immediately if ill. Right now, 80 percent of people admitted to a hospital for chest pain do not have coronary artery disease as the cause. That accounts for massive costs to the healthcare system that potentially could be saved.

320-Detector Row Dynamic Volume CT 
  • Fewer artifacts means faster interpretation
  • Better image quality means improved ?diagnostic confidence
  • Can replace several diagnostic tests with a single exam
  • Makes triage and treatment decisions more efficient
  •  
    Not only is the current workup of chest pain problematic, but healthcare policy changes and cost-cutting measures are underway that make this technology even more important. New policies such as “present on admission” (POA), in which hospitals are paid only based on the diagnosis made on admission, will drive utilization of advanced CT. There also is increasing pressure to use benchmark standards in which hospitals will be fined if they do not meet a number of diagnostic, treatment and efficiency standards. This will help put CT at the center point of the diagnostic workup.

    The bottom line is that we are going to have to change our workflow and clinical care pathways. We will have to make our diagnosis up front, quickly and accurately and make our triage and treatment decisions more efficiently. Again, it is our experience so far that dynamic volume CT will have a dramatic impact in this area.

    Although the studies are small, they all look very promising for cardiac CT to reduce ED wait times and costs for the workup of chest pain. Another ED study (CT-STAT) has just been completed and we are awaiting these results. In addition, researchers at Johns Hopkins and other universities are studying the ability of dynamic volume CT to look at myocardial perfusion (CorE 320). This is potentially game changing as it would allow us to look at how a particular stenosis impacts blood flow to the heart muscle with one test that takes less than 10 minutes and delivers low radiation doses.

    It has been my experience that patient outcomes, workflow and bottom line profits were improved with the use of 320-detector dynamic volume CT. Much of the improvement in the bottom line is seen in the cost reductions from using this technology versus other cardiovascular diagnostic technologies. Cardiac diagnosis time is being reduced from hours and days to mere minutes, which results in shorter emergency department times and shorter hospital stays. The technology is helping to lower radiation and contrast dose, making diagnostic imaging safer for the patient. It also is improving workflow and lowering costs by replacing several exams with this single exam, as well as empowering physicians to make a diagnosis faster and more confidently than before.